非常风学习网 导航

方程手抄报简单 数学手抄报方程怎么做

2018-06-12 来源:编辑

方程手抄报

1定义:含有未知数的等式叫方程。

等式的基本性质1:等式两边同时加(或减)同一个数或同一个代数式,所得的结果仍是等式。

用字母表示为:若a=b,c为一个数或一个代数式。则:

(1)a+c=b+c

(2)a-c=b-c

等式的基本性质2:等式的两边同时乘或除以同一个不为0的数所得的结果仍是等式。

(3)若a=b,则b=a(等式的对称性)。

(4)若a=b,b=c则a=c(等式的传递性)。

【方程的一些概念】

方程的解:使方程左右两边相等的未知数的值叫做方程的解。

解方程:求方程的解的过程叫做解方程。

解方程的依据:1.移项; 2.等式的基本性质; 3.合并同类项; 4. 加减乘除各部分间的关系。

解方程的步骤:1.能计算的先计算; 2.转化——计算——结果

例如: 3x=5*6

3x=30

x=30/3

x=10

移项:把方程中的某些项改变符号后,从方程的一边移到另一边,这种变形叫做移项,根据是等式的基本性质1。

方程有整式方程和分式方程。

整式方程:方程的两边都是关于未知数的整式的方程叫做整式方程。

分式方程:分母中含有未知数的方程叫做分式方程。

求方程的解集的过程叫做解方程。

[编辑本段]过程

首先,方程题目里会有一个含未知数x在左边,中间有一个等号,而右边是答案,现在让你求出未知数x,这要一步一步推算下去,并要学会移项,方程左边移到右边,加号变减号,乘号变除号,最后求出x式方程的解。在方程里如果要解方程,必需写一个“解”字,并且等号对齐。

例如:

3+x=18

解: x =18-3

x =15

∴x=15是方程的解

不过,x不一定放在方程左边,或一个方程式子里有两个x,这样就要用数学中的简便计算方法去解决它了。有些式子右边有x,为了简便算,可以调换位置.

"方程"一词是中国发明的词汇.

但方程的本身却不是发源于中国.

代数的起源可以追溯至3000多年前的古埃及人和古巴比伦人,他们用初期的代数来解线性方程、二次方程和不定方程。

公元前800年左右,印度数学家包德哈亚那(Baudhayana),在他的《包德哈亚那文集》(Baudhayana Sulba Sutra)中,给出了一次方程与形如 ax2 = c、ax2 + bx = c 的二次方程的几何解法。

公元前600年左右,印度数学家 Apastamba,在他的Apastamba Sulba Sutra中,给出了一次方程的解法。

公元前300年左右,希腊数学家欧几里得——在埃及的亚历山大讲学,并在那里逝世——在他的《几何原本》的第二卷中,讨论了二次方程,但用的是严格的几何方法。

公元前100年左右,中国的《九章算术》中出现了对代数方程的论述。

数学手抄报方程怎么做

数学手抄报方程

环保手抄报求中学生报,不要幼稚

开平方和开立方是解最简单的高次方程所必须用到的运算。在《九章算术》中,已出现解某种特殊形式的二次方程。发展至宋元时代,引进了“天元”(即未知数)的明确观念,出现了求高次方程数值解与求多至四个未知数的高次代数联立方程组的解的方法,通称为天元术与四元术。与之相伴出现的多项式的表达、运算法则以及消去方法,已接近于近世的代数学。

在中国以外,九世纪阿拉伯的花拉米子的著作阐述了二次方程的解法,通常被视为代数学的鼻祖,其解法实质上与中国古代依赖于切割术的几何方法具有同一风格。中国古代数学致力于方程的具体求解,而源于古希腊、埃及传统的欧洲数学则不同,一般致力于探究方程解的性质。

16世纪时,韦达以文字代替方程系数,引入了代数的符号演算。对代数方程解的性质进行探讨,是从线性方程组引出的行列式、矩阵、线性空间、线性变换等概念与理论的出现;从代数方程导致复数、对称函数等概念的引入以至伽罗华理论与群论的创立。而近代极为活跃的代数几何,则无非是高次联立代数方程组解所构成的集合的理论研究。

形的研究属于几何学的范畴。古代民族都具有形的简单概念,并往往以图画来表示,而图形之所以成为数学对象是由于工具的制作与测量的要求所促成的。规矩以作圆方,中国古代夏禹泊水时即已有规、矩、准、绳等测量工具。

《墨经》中对一系列的几何概念,有抽象概括,作出了科学的定义。《周髀算经》与刘徽的《海岛算经》给出了用矩观测天地的一般方法与具体公式。在《九章算术》及刘徽注解的《九章算术》中,除勾股定理外,还提出了若干一般原理以解决多种问题。例如求任意多边形面积的出入相补原理;求多面体的体积的阳马鳖需的二比一原理(刘徽原理)龚5世纪祖(日恒)提出的用以求曲形体积特别是球的体积的“幂势既同则积不容异”的原理;还有以内接正多边形逼近圆周长的极限方法(割圆术)。但自五代(约10世纪)以后,中国在几何学方面的建树不多。

中国几何学以测量和计算面积、体积的量度为天易娱乐官网任务,而古希腊的传统则是重视形的性质与各种性质间的相互关系。欧几里得的《几何原本》,建立了用定义、公理、定理、证明构成的演绎体系,成为近代数学公理化的楷模,影响遍及于整个数学的发展。特别是平行公理的研究,导致了19世纪非欧几何的产生。

欧洲自文艺复兴时期起通过对绘画的透视关系的研究,出现了射影几何。18世纪,蒙日应用分析方法对形进行研究,开微分几何学的先河。高斯的曲面论与黎曼的流形理论开创了脱离周围空间以形作为独立对象的研究方法;19世纪克莱因以群的观点对几何学进行统一处理。此外,如康托尔的点集理论,扩大了形的范围;庞加莱创立了拓扑学,使形的连续性成为几何研究的对象。这些都使几何学面目一新。

在现实世界中,数与形,如影之随形,难以分割。中国的古代数学反映了这一客观实际,数与形从来就是相辅相成,并行发展的。例如勾股测量提出了开平方的要求,而开平方、开立方的方法又奠基于几何图形的考虑。二次、三次方程的产生,也大都来自几何与实际问题。至宋元时代,由于天元概念与相当于多项式概念的引入,出现了几何代数化。

在天文与地理中的星表与地图的绘制,已用数来表示地点,不过并未发展到坐标几何的地步。在欧洲,十四世纪奥尔斯姆的著作中已有关于经纬度与函数图形表示的萌芽。十七世纪笛卡尔提出了系统的把几何事物用代数表示的方法及其应用。在其启迪之下,经莱布尼茨、牛顿等的工作,发展成了现代形式的坐标制解析几何学,使数与形的统一更臻完美,不仅改变了几何证题过去遵循欧几里得几何的老方法,还引起了导数的产生,成为微积分学产生的根源。这是数学史......

初中数学手抄报关于一元一次方程

手抄报需要自己动手寻找资源,盗窃别人的资源是一种犯罪。所以动起自己的手吧,去寻找资料,come on!

北师大版七年级一元一次方程手抄报,速度 要内容 O(∩_∩)O谢谢

什么东西,讲清楚。

初中一年级的二元一次方程组与矩阵的手抄报

要用方程解!小丽用一张长60cm,宽48cm的长方形卡片做手抄报,她先在宽边画出六分之一作为刊头,余下的部分

20x+48*1\6=48

20x+8 =48

20 x =40

x =2

解:设每行宽为xcm

20x+(48罚1\6)=48

x=2

设每行宽度为x厘米,则20x+(48*1\6)=48,解x=2

答:每行宽2厘米。

这些都行。。。

七年级数学二元一次方程组手抄报 来一份 急 急 急 急 急 急 急 急

问题呢

数学,直角模式?

因为数学中除了(笛卡尔)直角坐标系,还有平面极坐标系、柱面坐标系(或称柱坐标系)和球面坐标系(或称球坐标系)等。

书中公式即为直角坐标系下的两点间的距离公式,在坐标系下想一想就不难理解。

天易娱乐天易娱乐游戏平台平台
  • 学识
  • 学样
  • 返回顶部
    非常风学习网

    © www.verywind.com

    111111统计